
September 2008 www.stsc.hill.af.mil 19

As more and more interactions (includ-
ing personal, financial, and social)

become Web-based, a number of observa-
tions can be made. First, as technology ad-
vances and public awareness of Internet
security increases, an increasing portion of
Web traffic is likely to be carried by
Hypertext Transfer Protocol Secure
(HTTPS). Second, while that will provide
a level of end-to-end security, it will pre-
sent a new challenge for the functions and
services that rely on inspecting the con-
tent of Web traffic. Some of these ser-
vices and functions will concern security,
such as auditing and access control. The
challenge comes from two directions: (1)
the standard Web proxies of today pass
the HTTPS traffic through, and (2) Web
proxies are somewhat global (aggregating
Web traffic from many users or applica-
tions) and agnostic to personalization to
an individual user’s or an application’s
context and requirement. We developed a
personal proxy that is capable of handling
both HTTP and HTTPS traffic, and
demonstrated its use in tackling the threat
of phishing attacks. This personal proxy
will be a useful tool for implementing
functions and services that require inspec-
tion of Web traffic content.

Introduction
The ability to intercept normal interaction
between application components enabled
a number of useful functions such as
monitoring and auditing, adaptive failover,
load balancing, and (last but not least)
enforcement of security policies.
Obviously, the need for many of these
functions is already felt in the context of
Web-based applications. The use of Web
proxies by organizations to monitor and
protect Web-based applications running
within their networks, the use of load bal-
ancing mechanisms in server farms, and
handling cross-domain exchanges are
cases in point.

A number of interception-based func-
tions require deep inspection of the traffic,
meaning operations that need to access

the content of the payload, not just the
HTTP header information. Web proxies
can do this job perfectly for HTTP traffic,
but not for HTTPS traffic. The reason is
that HTTPS is the secure version of the
HTTP protocol, and HTTPS payloads are
encrypted by Transport Layer Security and
are not meant to be inspected or modified
by interlopers like the proxy.

As important services increasingly
become Web-enabled and as the task of
setting up HTTPS becomes routine, we

expect that increasing Web traffic will
move over to HTTPS to provide a level of
security that the users have come to
expect (e.g., the padlock sign on the
browser). This gain in one aspect of secu-
rity (i.e., site authentication and defense
against confidentiality and integrity attacks
on the information during the transit)
makes it difficult for functions that require
access to the content, such as auditing and
monitoring, application level rate limiting,
application level adaptive caching, con-
text-specific failover and load balancing,
and so forth. In addition, as Web services
become the de-facto mechanism of infor-
mation exchange, proxies are likely to play
a key role in handling cross-domain issues.
For example, opening HTTP connection
to Web sites other than the one from
which the current Web page was served is
usually not permitted from the browser,

but the application may need to interact
with services from other Web sites. Using
a proxy is one solution that is often used
to get around that problem. The problem
gets more complicated if different ser-
vices are at different security levels. If that
transaction happens over HTTPS, the
standard proxies will be of no use – one
must use a proxy like ours that can proxy
HTTPS.

The global and impersonal nature of
the proxies poses another challenge.
Unlike a firewall (that deals with many
protocols including HTTP and many
ports including those used by Web ser-
vices), a Web proxy is narrowly focused
on the HTTP traffic. However, like a fire-
wall, a Web proxy covers multiple hosts,
users, and applications in an aggregate
form. The wide variety of Web applica-
tions and their range of importance and
sensitivity – from financial transactions
like banking and shopping to social inter-
actions over Facebook, Web-based e-
mail, and chat – will demand an unfore-
seen level of personalization or applica-
tion-specificity in monitoring, auditing,
access control, rate limiting, or load bal-
ancing solutions. We claim that the aggre-
gate and one-size-fits-all nature of Web
proxies will make the Proxy-based
Solutions situated at the Internet Service
Provider (ISP) or at corporate boundaries
insufficient and less acceptable.

On one hand, the users will be less
comfortable disclosing their personal
preferences and requirements to the
remote proxy that they do not own and
control themselves. While understanding
and enforcement of the policy may be a
daunting task for some users, they will
still demand canned policies that they can
turn on. Think of setting your browser’s
security settings, but different settings for
Facebook and your bank, and even dif-
ferent settings for different Facebook
users in your household that you can con-
trol. Then, there will always be a group of
technology-literate users questioning the
adequacy of protection of personal data

Supporting Safe Content-Inspection of Web Traffic1

Interception of software interaction for the purpose of introducing additional functionality or alternative behavior is a well-
known software engineering technique that has been used successfully for various reasons, including security. Software wrap-
pers, firewalls, Web proxies, and a number of middleware constructs all depend on interception to achieve their respective secu-
rity, fault tolerance, interoperability, or load balancing objectives. Web proxies, as used by organizations to monitor and secure
Web traffic into and out of their internal networks, provide another important example.

Dr. Partha Pal and Michael Atighetchi
BBN Technologies

“We developed a
personal proxy that is

capable of handling both
HTTP and HTTPS traffic,
and demonstrated its use
in tackling the threat of

phishing attacks.”

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Supporting Safe Content-Inspection of Web Traffic

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
BBN Technologies 10 Moulton ST Cambridge, MA 02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
CROSSTALK The Journal of Defense Software Engineering September 2008

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

and the quality of enforcement offered at
the remote proxy. On the other hand,
because the remote proxy aggregates
traffic flow from multiple users and
applications, they are ill-equipped to
enforce policies and preferences that are
highly specialized (personalized) for indi-
vidual applications or users without
mutual interference.

We argue that we need a personal Web
proxy that will do the following:
• Be situated near the user or the appli-

cation it proxies (it is even possible to
have dedicated proxies for each appli-
cation), and is controlled by the user
or the owner of the application it is
proxying.

• Enforce the user’s or the application’s
policies and personal preferences that
can be easily plugged in.

• Be able to inspect HTTPS traffic with-
out compromising the security gains
contributed by the HTTPS protocol.
The envisioned personal proxy is

analogous to personal firewalls: As per-
sonal firewalls bring firewall capability
near to the user’s host from the network
edge, the personal proxy will also push
proxying capability from the network
edge closer to the user or the application.
Furthermore, the personal proxy is a
valid application level proxying mecha-
nism that can be easily customized for
the application or user at hand; it pro-
vides an easy way to introduce additional
application or user-specific functionality
in the HTTP/HTTPS path.

There are a number of software engi-
neering reasons supporting the need of a
separate proxy, as opposed to embedding
the needed additional functions into the
application components it mediates
between. First, the proxy adds a separate
layer of protection (another process to
corrupt – a crumple zone, if you will), and
provides stronger isolation guarantees
(defense against memory corruption
attacks) and increased flexibility. The proxy
is less complex than the browser that has
to support applications ranging from
streaming media to Java applet, and pro-
vides a smaller attack surface. Since the
proxy is a dedicated process, it can be pro-
tected using technologies that implement
process protection domains, such as
SELinux [1] or Cisco Security Agent [2].
Second, a personal proxy offers a good
middle ground between the two extremes,
dealing with the aggregate of interactions
at the network edge or modifying each
application. A browser plugin-based
implementation will not be able to control
or monitor non-browser applications that
may use HTTP or HTTPS and should be

subject to the same user-defined policies
and preferences. To cover this situation,
one either assumes (somewhat unrealisti-
cally) that all applications interacting over
HTTP/HTTPS use the browser or are
forced to develop similar embedded capa-
bilities for each of those non-browser
applications. Furthermore, the corporate
or ISP proxy may not be able to enforce
policies of individual applications and
users at the network edge. It is easier to
implement user- or application-specific
policies and behavior into a personal proxy
that runs on the user’s host and, using fire-
wall rules, mandate that the only way
HTTP/HTTPS traffic gets in or out is
through the proxy. Third, any mechanism
that enables flexible and customizable
introduction of additional behavior, con-
straint enforcement, and monitoring with-
out requiring costly (and sometimes

impossible) code changes in the original
application is a valuable software engineer-
ing asset. The personal proxy performs
this job adequately. Other than ensuring
that the HTTP/HTTPS traffic flows
through it, no code change is necessary for
the applications that interact through it.
Finally, to be general and to support all
kinds of monitoring and inspection use-
cases, the additional user- or application-
specific policies and behavior must be
inserted before traffic is encrypted with
the remote site’s key. To illustrate the
point, note that Chinese users are able to
bypass governmental scrutiny enforced at
their network edge by interacting with
encrypting proxies outside China. While
our proposed personal proxies are con-
trolled by the user/application it covers (as
opposed to any government agency), there
are use-cases (e.g., parental control, cross-
domain security policy enforcement)
where personal proxies provide a better
solution than the browser-embedded
checks or proxies at the edge.

Under Department of Homeland
Security (DHS) funding, we have devel-
oped a customizable Web proxy that han-
dles both HTTP and HTTPS protocols.
For HTTPS, the proxy works by establish-
ing two System Specification Language

(SSL) connections: one between the
browser and the proxy, and the other
between the proxy and the remote Web
site. The customization happens by con-
figuring the proxy’s chain of interceptors.
The proxy can be placed near the user, on
the user’s computer, or at the user’s home
router box. We have demonstrated how
such a personalized proxy can be used to
protect the user from divulging personal
information to malicious Web sites (i.e.,
defense against phishing attacks). We have
started investigating other uses of the
proxy, such as auditing inter-agent com-
munication in a semantic Web application
so that the recorded interactions can be
used by machine-learning algorithms that
aim to learn and improve how the agents
achieve their tasks. In this article, we
briefly describe the architecture and oper-
ation of this personal proxy; a detailed
description and the anti-phishing applica-
tion appears in [3].

Architecture of the Personal
Proxy
Figure 1 illustrates the design of the per-
sonal proxy, which consists of four main
modules that are implemented on top of
Jetty, a popular open-source Web server
written in Java [4]. The plugin framework
provides a means for integration of cus-
tom reactive and proactive behavior. In
the first application of this proxy, all anti-
phishing checks were implemented as a set
of plugins for this module. A plugin can
be one of the following three types,
depending on its role in the overall control
flow and threading logic:
• Data plugins. Each data plugin is

invoked on every request and associat-
ed response. A data plugin is used for
handling the header and payload data
based on a specified security policy.
For example, a proxy could be config-
ured to record all or selected parts of
Web traffic as part of a parental con-
trol policy. Recordings can be persisted
securely on the disk.

• Checks. These plugins are organized
in a chain, and intercepted requests
flow through these checks like a
pipeline. An individual check exits with
either a break or a continue. A continue
indicates that the request goes to the
next stage, possibly with some addi-
tional metadata tagged to it. Breaks can
be of two kinds: A negative break indi-
cates that the request is to be blocked,
while a positive break indicates that the
request is to be accepted. In either
case, a break implies that the rest of
the pipeline stages are not executed.

20 CROSSTALK The Journal of Defense Software Engineering September 2008

“... a personalized proxy
can be used to protect
the user from divulging
personal information to
malicious Web sites ...”

Application Security

Supporting Safe Content-Inspection of Web Traffic

September 2008 www.stsc.hill.af.mil 21

This semantics of checks is amenable
to modular implementation and inte-
gration of security policies.

• Probes. In contrast to checks and data
plugins, which only execute reactively
when triggered by requests or respons-
es, probes allow us to embed proactive
behavior into the proxy. Probes con-
tain dedicated threads that trigger
monitoring functions at regular config-
urable intervals. The probes can be
configured to visit specified URLs and
scheduled intervals to collect data that
is relevant for the security policy con-
text. For example, in the case of
defending against phishing attacks, the
probes were used to check for changes
in an Internet Protocol address or
security credential of the banks or
financial sites registered by the user.
The lower part of Figure 1 displays the

remaining three modules. The modules act
as access paths into the proxy. The HTTP
Proxy listens on a configurable network
port (e.g., 8080) for incoming HTTP
requests, and dispatches the requests to a
main handler (InterceptHandler), which in
turn makes strategic use of the plugins.
This flow is similar in the case of the
HTTPS Proxy, except that it listens on a
different network port (8443) and uses a
custom extension of the InterceptHandler
(called SslProxyHandler) that intercepts
HTTPS connect requests and facilitates
subsequent interception of all HTTPS
requests in that session. The third access
path, HTTPS Requests, is for manage-
ment of the proxy through an administra-
tion console. Management functions
include changing the order of plugins and
their respective importance weights as well
as customization of user-specific data.
The administrative interface is optional
for out-of-the-box deployment, where the
proxy is preconfigured and preloaded with
appropriate plugins that enforce the
desired policy. We do not anticipate that
the internal details are important for most
of the users (beyond pointing their appli-
cations or browsers to the proxy). The
users who write and package custom poli-
cies for different users and applications
will need to know the details of plugins. A
better policy interface, supporting a gener-
ation of plugins (which can be added to
the proxy by editing a configuration file)
from higher-level policy specification, and
a better way to inspect the policies encod-
ed in existing plugins, is part of our future
work. Once this policy interface is in
place, these users will also be shielded
from the internal details and complexities
of the plugin architecture. If the internal
details change because of evolution of the

Jetty code base/Web services specifica-
tion, only the policy interface implementa-
tion will need to change.

Placement Options
The standard deployment of the proxy is
on the end user’s computer. Although this
puts a small load on the Central
Processing Unit (CPU), memory, and disk
resources on the end system, it has the
benefit of putting the proxy under direct
control of the end-user. Our understand-
ing is that end-users feel uncomfortable
with disclosing personal and sensitive
information (preferences, policies) to
external parties, but are more amenable to
providing this information to local com-
ponents as long as it doesn’t leave their
machine. Since many end-users own
either a wireless or DSL router and since
these devices already ship with Web serv-
er capabilities, we investigated deploying
the proxy on a Linksys WRT54G wireless
router running OpenWrt [5]. Another
option is to run the proxy on a home
router, which has the benefits of
increased security through stronger isola-
tion from a potentially virus-infected
desktop, and a new value-add for router
manufacturers. On the downside, the very
limited CPU and memory resources of
the home routers, especially wireless
routers, significantly lowers the perfor-
mance of the proxy.

Insertion Into HTTP(S) Flow
Insertion of the proxy into the non-
encrypted HTTP client-server path is
straightforward and involves changing the
client application’s proxy settings (e.g.,

HTTP Web browser). To prevent an attack-
er from replacing the proxy setting to a
proxy of his own, and to ensure that any
application using HTTP/HTTPS is subject
to the security policy enforced by the per-
sonal proxy, firewall rules should be set to
only allow outgoing Web traffic through
the personal proxy. For intercepting
encrypted requests from client application
that uses HTTPS, the client application’s
(such as the browser’s) proxy settings are
changed accordingly to redirect requests to
personal proxy’s HTTPS port. However,
describing how appropriate security associ-
ations are established is slightly more
involved (see Figure 2, next page).

In a regular use case without any
HTTPS proxy, SSL relies on a Public Key
Infrastructure for connection establish-
ment [6]. Following a general description
of the SSL protocol, the client issues a
connection request to the server, which
the server acknowledges with a response
containing a certificate signed by a certifi-
cation authority (CA). The client then con-
tinues to perform a set of checks on the
server certificate, the main one of which is
to verify that the CA’s signature is valid. In
most cases, SSL transactions essentially
establish a unidirectional trust relationship
between the browser and the target Web
server via a commonly trusted CA.

With the proxy in the mix, the proto-
col becomes a little more complex. The
proxy takes on the role of a server when
communicating with the browser and the
role of a browser when communicating
with the target Web server. This requires
the proxy to dynamically generate X509
certificates for each Domain Name

Jetty Web server

Plugin Framework
Data Plugins, Checks, Probes

Encrypted
Database

use

use use manage

HTTP Proxy HTTPS Proxy Admin Console

InterceptHandler SSLProxyHandler ResourceHandler

HTTPConnection HTTPConnection HTTPConnection

SocketListener SocketListener SSLListener

extend

create + handle

HTTP Requests HTTPS Requests

Socket 8080 8443 9443

dispatch

Figure 1: Functional Architecture of the Personal Proxy

System name it is proxying2 certified by its
own CA3 (called PB CA in Figure 2).
During installation, the Web browser’s
(and any other application’s using HTTPS)
settings are configured to trust signatures
from the PB CA. As a result, the overall
trust relationship between browser and
target Web server can now be decom-
posed into two daisy-chained relation-
ships, one between the browser to the per-
sonal proxy, and a second between the
personal proxy and the target Web server.

Does the proxy introduce additional
security vulnerabilities by breaking the
end-to-end encryption between browser
and Web server? The answer to this ques-
tion depends on the relative trustworthi-
ness of the proxy compared to the brows-
er and target Web server and where it is
deployed. Consider the case where the
user does not use a personal proxy, but
thinks that his desktop and the servers he
uses are more secure than the ISP server
through which he uses the Internet. The
ISP server may co-host other applications,
and if it does not have the latest security
patches installed, such a setup would sig-
nificantly lower the overall security of
Web transactions flowing through it. On
the other hand, if the personal proxy is
co-located with the Web browser on the
same desktop, we would expect it would
be more difficult for attackers to subvert
or corrupt the Java-based stand-alone
proxy process (which only listens on local-
host) compared to a C++ Web browser
running Javascript. In both cases, data is
never sent unencrypted over the network,
so the guarantees provided by SSL across
host boundaries are not affected.

Performance Overhead
Introduction of a clearly noticeable delay
presents increased resistance to adoption

of the new technology. To minimize per-
formance impact, we implemented the
proxy on top of the high performance
Jetty Web server and implemented various
optimizations in the SSL proxy architec-
ture to keep request latencies (i.e., elapsed
time between a request and its response)
within user acceptable levels. In this sec-
tion, we use overhead to mean the increase
in request latency due to interception of
HTTPS traffic by the proxy.

We measured the overhead in a lab set-
ting by visiting HTTPS sites without the
proxy and with the proxy configured with
a number of anti-phishing checks. The
mean time to load the visited pages
through the proxy was twice the mean
time to load the same pages without the
proxy (excluding any user interaction like
typing a password for both cases).
However, the variance of load time was
comparable to the mean (not surprising
because we were visiting sites on the
Internet), and even an overhead of rough-
ly 100 percent was not distinguishable
from the noise (as noted by external field
testers, the delay introduced by the proxy
does not noticeably impact the user Web
surfing experience). Much of this over-
head can be attributed to crypto opera-
tions and session multiplexing performed
in Java. We expect the plumbing overhead
to stay independent of the policy checks
enforced by the proxy.

We also compared the round-trip
latencies between an auditing configura-
tion (when the proxy is simply record-
ing) and a policy enforcing configuration
(loaded with anti-phishing checks). We
found that the two distributions are not
significantly different as their inter-quar-
tile ranges overlap to a large extent
(from 200 to 1,500 milliseconds [ms])
and both distributions have a large num-
ber of outliers (some even greater than

Application Security

22 CROSSTALK The Journal of Defense Software Engineering September 2008

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

October 14-16
Software Assurance Forum

Gaithersburg, MD
https://buildsecurityin.us-cert.gov/

daisy/bsi/events/930-BSI.html

October 19-23
International Conference on

Object-Oriented Programming Systems,
Languages, and Applications

Nashville, TN
www.oopsla.org/oopsla2008

October 20-21
National Defense Industrial Association

Technical Information Division Conference
Huntsville, AL

www.ndia.org/meetings/9010

October 26-30
SIGAda with SAMATE

Portland, OR
www.sigada.org/conf/sigada2008

November 10-14
Agile Development Practices 2008

Orlando, FL
www.sqe.com/agiledevpractices

November 11-14
19th IEEE International Symposium on

Software Reliability Engineering
Seattle, WA

www.csc2.ncsu.edu/conferences/
issre/2008

December 8-12
Annual Computer Security Applications

Conference
Anaheim, CA

www.acsac.org

April 20-23, 2009

21st Annual Systems and Software
Technology Conference

Salt Lake City, UT
www.sstc-online.org

Figure 2: Personal Proxy as a Trusted Middleman

Supporting Safe Content-Inspection of Web Traffic

September 2008 www.stsc.hill.af.mil 23

50,000 ms). We suspect that available
network bandwidth to the external Web
sites together with available CPU
resources of those sites have the biggest
impact on round trip latencies, which is
why the distributions looked similar.

Related Work
Various HTTP and HTTPS proxy imple-
mentations exist for debugging purposes
(Burp proxy [7], Charles proxy [8]) and
Web filtering (WebCleaner [9], Privoxy
[10]). There are also a number of com-
mercial network layer tools (e.g., eSafe’s
Web Threat Analyzer [11], McAfee
IntruShield [12]) that can inspect Web
traffic, including HTTPS that work at the
enterprise layer. In many cases, these are
geared for regulatory and auditing compli-
ance, the DHS-funded research focused
on transparent inspection of SSL traffic
exclusively for regulatory purpose.
However, we were unable to find a proxy
that could be used as a general purpose
middleware construct for customized user
and application-specific policies.

Conclusion
We have been developing advanced mid-
dleware technologies that enable adaptive
behavior, quality of service (QoS) man-
agement and QoS-based adaptive behav-
ior in distributed systems over the past
several years [13]. In doing so, we have
developed middleware constructs for han-
dling different styles of distributed inter-
action (e.g., distributed objects, publish-
subscribe, group communication) over a
number of protocols (e.g., socket-based,
Common Object Request Broker Archi-
tecture or Remote Method Invocation).
The present work involving HTTP and
HTTPS interception complements that
line of successful work, and enables us to
introduce advanced middleware capability
to distributed systems that use these pro-
tocols. The concept of a personal proxy
has the potential to fill an important and
emerging gap in the current Web-based
systems architecture.

However, as noted earlier, the person-
al proxy is still in its early stages – we only
have a prototype implementation that is
demonstrated with anti-phishing checks,
and have just begun exploring its use in
other contexts.

A number of software engineering and
usability issues also need additional work,
including an easy way to inspect enforced
policies and the ability to define policies at
a higher level of abstraction that can be
automatically translated into executable
code that can be integrated into the plug-

in framework. These are the next steps we
hope to tackle.u

References
1. Loscocco, P., and S. Smalley. Integrat-

ing Flexible Support for Security Pol-
icies Into the Linux Operating System.
Proc. of 2001 USENIX Annual Tech-
nical Conf. USENIX Association,
Berkeley, CA: 2001.

2. Cisco. “Cisco Security Agent-Enter-
prise Solution for Protection Against
Spyware and Adware.” Cisco White
Paper <www.cisco.com/en/US/prod/
collateral/vpndevc/ps5707/ps5057/
prod_white_paper0900aecd8020f438.
html>.

3. Zodgekar, Sameer A. Identity Theft: A
High-Tech Menace. ICFAI University
Press. Apr. 2008.

4. Mortbay.com. The Jetty Java Web
Server Vers. 5.1. 2007 <www.mortbay.
org/jetty-6/>.

5. Openwrt.org. The Linux Distribution
for Wireless Freedom <http://open
wrt.org>.

6. Wagner, D., and B. Schneier. Analysis
of the SSL 3.0 Protocol. Proc. of the
Second USENIX Workshop on Elec-
tronic Commerce. Oakland, CA: 1996.

7. Portswigger.net. The Burp Proxy Tool
Vers. 1.1. 2008 <www.portswigger.

net/proxy>.
8. Charles Web Debugging Proxy. About

Charles. <www.charlesproxy.com>.
9. Kuhnast, Charly. “Junk Zapper.” Linux

Magazine June 2004 <www.linux-mag
azine.com/issue/43/Charly_Column.
pdf>.

10. The Privoxy Team. Privoxy 3.0.8 User
Manual. 2008 <www.privoxy.org/user
-manual/index.html>.

11. Aladdin.com. “The eSafe Web Threat
Analyzer Audit.” 2008 <www.aladdin.
com/esafe/solutions/wta>.

12. McAfee.com. “McAfee Network Se-
curity Platform Data Sheet.” 2007
<www.mcafee.com/us/local_content
/datasheets/ds_network_security_
platform.pdf>.

13. BBN Technologies. The QuO Group
at BBN. “Distributed Systems Tech-
nology Group Papers.” <www.dist-sys
tems.bbn.com/papers/>.

Notes
1. This work was supported by the DHS

Advanced Research Projects Agency
under contract number NBCHCO50096.

2. To increase generation performance,
key pairs can be reused across certi-
ficates.

3. Alternatively, the PB CA can be signed
by a common root CA.

About the Authors

Partha Pal, Ph.D., is a
division scientist at BBN
Technologies’ National
Intelligence Research and
Application business unit.
His research interests

include adaptive and survivable distrib-
uted systems and applications, and tech-
nologies that enable adaptive behavior
and survivability. Pal has published more
than 35 technical papers in peer-review-
ed journals and conferences and is a
senior member of the Institute of Elec-
trical and Electronic Engineers (IEEE)
and a member of the Association for
Computing Machinery. He received his
master’s and doctorate degrees from
Rutgers University, New Brunswick, NJ.

BBN Technologies
10 Moulton ST
Cambridge, MA 02138
Phone: (617) 873-2056
Fax: (617) 873-4328
E-mail: ppal@bbn.com

Michael Atighetchi is a
scientist at BBN Tech-
nologies’ National Intel-
ligence Research and Ap-
plication business unit.
His research interests

include security and survivability, intelli-
gent agents, and middleware technolo-
gies. Atighetchi has published more than
20 technical papers in peer-reviewed
journals and conferences, and is a mem-
ber of the IEEE. He holds a master’s
degree in computer science from
University of Massachusetts at Amherst,
and a master’s degree in information
technology from the University of
Stuttgart, Germany.

BBN Technologies
10 Moulton ST
Cambridge, MA 02138
Phone: (617) 873-1679
Fax: (617) 873-4328
E-mail: matighet@bbn.com

